Die Behandlung großflächiger sowie innerer Wunden ist eine Herausforderung und kann äußerst langwierig sein. Forscherinnen und Forscher des Fraunhofer-Instituts für Silicatforschung ISC und des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM haben für diesen Anwendungsbereich eine bioresorbierbare Membran entwickelt, die die Wundheilung unterstützt und sich vollständig im Körper zu einer natürlichen Substanz biologisch abbaut.
Basis für die neuartige Membran ist ein am Fraunhofer ISC entwickeltes Faservlies, das für die Regeneration von chronischen Wunden, wie dem diabetischen Fuß, bereits medizinisch zugelassen ist. Das Material löst sich im Verlauf der Wundheilung nach sechs bis acht Wochen vollständig auf. Den Faserdurchmesser von 50 Mikrometer konnten die Forschenden um mehr als das 50fache verringern, sodass die Fasern nun Durchmesser von weniger als einem Mikrometer aufweisen. Dabei wendete das Team die Methode des Elektrospinnens an. Auf diese Weise konnten die Forschenden ein Kieselgelsol zu einer engmaschigen Kieselgelmembran aus Fasern mit einem Durchmesser von ca. einem Mikrometer verspinnen. Teilweise erzielten sie sogar Durchmesser von lediglich 100 Nanometern. »Diese Fasersysteme ahmen die extrazelluläre Matrix, also Faserstrukturen, die im Bindegewebe vorkommen, im Körper nach und werden von humanen Zellen sehr gut zur Regeneration angenommen. Sie verursachen keine Fremdkörperreaktionen und keine inneren Vernarbungen. Die neuartige Kieselgelmembran setzt nur ein Degradationsprodukt frei, die Monokieselsäure, die im Körper regenerierend wirkt und das Schließen von Wunden fördert«, erläutert Dr. Bastian Christ, Wissenschaftler am Fraunhofer ISC in Würzburg. Mit seinen Kolleginnen und Kollegen kümmerte er sich um die Synthese und die Verarbeitung des Materials.
»Während das ursprüngliche Faservlies aus 50 Mikrometer dicken Fasern von außen in eine chronische Wunde eingebracht wird, eignet sich das dünnere Faservlies auch für innere Anwendungen. Füllmaterial, das für Knochendefekte im Kiefer genutzt wird, könnte theoretisch damit abgedeckt werden, um so die Wundheilung zu beschleunigen«, beschreibt Dr. Christina Ziemann, Wissenschaftlerin am Fraunhofer ITEM und für die biologische Evaluierung des Materials zuständig, eine von vielen Einsatzmöglichkeiten. »Prinzipiell lässt sich die Membran im Körper mit bioabbaubaren Klebstoffen verkleben.«
Material ist weder zell- noch gentoxisch
Mittels eines Konfokalmikroskops, eines speziellen Lichtmikroskops, konnte gezeigt werden, dass die engmaschige Membran, die als Demonstrator vorliegt, über eine Barrierefunktion verfügt, die den Durchtritt von Bindegewebszellen über die Dauer von mindestens sieben Tagen verhindert, ohne die Zellen generell vom Wachstum abzuhalten. Darüber hinaus ist die Membran resorbierbar und weist keine Zyto- oder Gentoxizität auf, sie verursacht also weder direkte Schäden am Gewebe noch an der DNA.
Faserdurchmesser und Maschenweite beeinflussen das Verhalten der Zellen
Für die Anwendung als Adhäsionsbarriere, um postoperative Verwachsungen und Narbenbildung zu vermeiden, wurde ein dünner Faserdurchmesser mit dünnen Maschen gewählt, sodass nur Nährstoffe das Faservlies passieren konnten – jedoch keine Bindegewebszellen. Bei einem Faserdurchmesser von einem Mikrometer und entsprechend weiteren Maschen hingegen wachsen die Zellen in das Fasergeflecht ein, vermehren sich dort und wirken regenerierend auf das umliegende Gewebe. »Durch Einstellen der Materialeigenschaften wie Faserdurchmesser und Maschenweite können wir das Verhalten der Zellen wunschgemäß beeinflussen«, sagt Christ. Für das Verspinnen der Fasern werden die erforderlichen Anlagen am Fraunhofer ISC anwendungsgerecht und kundenspezifisch konstruiert. Auch die Form und Größe der Faservliese lassen sich kundenspezifisch anpassen.
Im Gegensatz zur Membran, die direkt nach dem Aufbringen aufgrund ihrer offenmaschigen Natur einen Nährstofftransport, nicht aber einen Zelldurchtritt erlaubt, ermöglichen viele am Markt erhältliche Produkte einen derartigen Stofftransport oft erst nach der Biodegradation, bzw. nach beginnender Degradation. Eine schnelle und effektive Wundheilung ist aber nur möglich, wenn das verwundete Gewebe ausreichend mit Nährstoffen versorgt wird. Gleichzeitig müssen Stoffwechselprodukte abtransportiert werden, was durch die offene Maschenstruktur der Kieselgelmembran gefördert wird.
Membran mit anorganischem Charakter
Ein weiterer Vorteil: Die Renacer®-Membran löst sich vollständig auf und zersetzt sich fast pH-neutral zu untoxischer Monokieselsäure, die einzige wasserlösliche Form von Kieselsäuren. Sie ist nativ im Körper vorhanden und stimuliert nachweislich den Bindegewebsaufbau in der Haut und den Knochenaufbau. Über solche Eigenschaften verfügen bislang erhältliche Produkte nicht. Viele biodegradierbare Materialien lösen sich zu organischen Säuren, wie Milchsäure oder Glykolsäure, auf. Dadurch können lokale Übersäuerungen im Gewebe entstehen und diese dann entzündliche Reaktionen des Immunsystems auslösen. »Unsere Tests haben gezeigt, dass auch das Auflösungsprodukt, die Monokieselsäure, nicht toxisch und komplett zellverträglich ist«, so Ziemann. »Die Membran zersetzt sich zu einem einzigen Molekül – der Monokieselsäure.«
Fasern als Wirkstoffdepot
Darüber hinaus können Wirkstoffe in das Faservlies integriert werden, die mit der Auflösung des Materials freigesetzt werden. »Während der Resorption könnte beispielsweise ein Antibiotikum auf eine Wunde im Körper abgegeben werden, damit sich keine Bakterienherde bilden können«, erläutert Christ. Am Fraunhofer ISC wird im BMBF-geförderten Projekt »GlioGel« geprüft, ob sich die Renacer®-Materialplattform als Wirkstoffdepot zur Behandlung von Hirntumoren eignet.