»Accordingly, these composite materials, which can be manufactured on an industrial scale, represent a milestone in the development of functionalized bio-based material systems with high mechanical strength,« explains Moser. »And they make a substantial contribution to the closed-loop economy, because the composite can also be melted and, using existing manufacturing equipment, reprocessed into a new product for high-quality applications.«
In the manufacture of the composite, two different PLA types with different melting points are combined into a self-reinforced PLA composite material. The higher-melting-point PLA is embedded as a reinforcing fiber in the lower-melting-point matrix. The resulting material rigidity can compete with commercially available self-reinforced polypropylene composites. It is planned to manufacture initial prototypes already later this year.
Aside from Fraunhofer ICT, other partners of the »Bio4self« project, which is funded by the EU’s »H2020« funding program (funding code: 745762), include the Technical University of Denmark, the Belgian textile research institute CENTEXBEL and the Danish firm Comfil. The resource-conserving concept with great application potential also impressed the jury at JEC 2019, Europe’s largest trade fair for composite materials, winning first prize in the Sustainability category.
The material can also be seen at the world's leading industry trade fair for the plastic industry "K" in Düsseldorf - from 16 to 23 October at the Fraunhofer booth SC01 in hall 7.